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Abstract—Many of the tasks planned for future generation Mars
rovers rely heavily on having accurate knowledge of the rover’s
location in a Martian body-fixed coordinate system. Current
solutions for localization require regular human intervention in
order to detect and rectify drift, and thus stand to benefit from
systems that can run in real-time on the rover itself. We study
the feasibility and performance of an automated approach to
localization in which the rover makes bearing-only measure-
ments to geographic features in its surroundings (hills, boulders,
peaked ridge-lines, etc.). When the location of these landmarks
can be cross-referenced with a map of Mars, the resulting
solution will be globally registered and will help correct any drift
during visual-odometry-aided drives. This paper studies two
related problems: First, how can we locate geographic features
that the rover can feasibly see, when provided an elevation map
of the surrounding terrain? We provide a software tool that can
extract features from elevation maps for comparison to imagery.
However, once these landmarks are identified, it is not obvious
if a given path for the rover will contain sufficient features to
navigate autonomously. Accuracy will depend on the quantity,
range, and relative geometry of landmarks that are available.
Thus, the second contribution is to provide a GIS plugin that
analyzes the terrain informativeness of large operating areas
as well as more specific paths. We present an analysis of
Jezero Crater in which Perseverance’s Navcam is used as the
hypothetical sensor. In certain favorable regions, worst-case
localization accuracy in the 10 meter range is achieved from a
single set of measurements (comparable to GPS on Earth). The
map overlays generated by this analysis have the potential to
aid in long-term mission planning by highlighting broad areas
of high or low informativeness. These tools are computationally
efficient and will be made open source to allow Mars mission
planners, formulation studies, and rover drivers to plan for any
future image-based self-localization capability.
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(a) on-board camera (b) digital elevation model

Figure 1: An image taken by Perseverance’s Mastcam-Z on
sol 3 (cropped & stretched) showing three distinctly visible
peaks and the corresponding topographic features marked on
a map of Jezero Crater.

1. INTRODUCTION
For robotic tasks both on Earth and in space, having accurate
knowledge of the robot’s location throughout the duration
is essential in the completion of a wide range of missions.
As a motivating example, the proposed Mars Sample-Return
mission envisions the collection of a diverse set of samples
from a variety of locations on the surface of Mars, in the
hopes of later return to Earth. These criteria put substantial
navigational demands on the Mars 2020 Perseverance Rover
(theoretically responsible for the first leg of this mission)
in terms of both range and speed [1]. For planetary rovers
in general, since GPS is unavailable, localization can be
achieved directly by matching surface features in the vicinity
of the rover to surface imagery captured by onboard cameras.
However, current implementations require regular human
intervention in order to detect and rectify drift, and thus stand
to benefit from systems that can run in real-time on the rover
itself [2].

We consider an approach in which the rover makes a series
of bearing-only measurements to known large-scale surface
landmarks. Potential landmarks on the surface of Mars in-
clude large boulders in known locations (e.g., from HiRISE),
the peaks of well-isolated hills, distant ridge-lines, and any
other feature of the terrain that can be reliably identified both
in Mars maps and located by the rover’s cameras. When the
location of these landmarks can be cross-referenced with a
map of the area, the resulting solution will be globally regis-
tered in the martian body-fixed coordinate system and will

1



help correct any drift during visual-odometry-aided drives.
We seek to determine a rough upper bound on the effective-
ness of this model of localization, depending on the terrain.

Under this model, the rover will be able to localize if there are
at least two non-collinear landmarks available. In general, the
accuracy of this localization depends on quantity, range, and
relative geometry of landmarks that are available from the
current location. A landmark is considered available when
there is direct line-of-sight between the landmark and the
camera sensor. Once a global set of landmarks is determined,
we can associate a metric for terrain informativeness with
each point on the map based upon the theoretical localization
accuracy of a rover situated at that location. By computing
this metric for every point in the scene, a raster is produced
that captures the varying terrain informativeness for the entire
region.

We present a complete pipeline for analyzing a digital ele-
vation model (DEM) in order to asses the applicability of
our landmark-based navigation model. First, potential land-
marks are automatically detected in the terrain using standard
morphological techniques. Then, the regions of visibility
(“viewsheds”) of these landmarks are computed. Finally,
the theoretical localization accuracy is determined at every
point in the raster by computing the geometric dilution of
precision (GDOP) in the resulting position estimate based
on an assumed noise model in our primary sensor. This
process is implemented as a set of plugins for the QGIS
software package. We then present an analysis of Jezero
Crater in which the Perseverance Rover’s Navcam is used as
the hypothetical sensor. In certain favorable regions, worst-
case localization accuracy in the 10s of meters is achieved
(comparable to GPS on Earth). We show example map
overlays generated by this analysis and discuss their potential
to aid in long-term mission planning by highlighting broad
areas of high or low informativeness.

An implementation of this approach would be relatively
straightforward. It would include outfitting the rover with
a static database of landmarks in its operational area, a
system for detecting and recognizing landmarks within its
field of view, and a general schedule/protocol for making the
observations. The database might include the pre-computed
viewsheds for each of the landmarks to aid in the recognition
step. The resulting self-contained system would serve as
an additional sensing modality which could help lower po-
sitional uncertainty during autonomous drives. An advantage
of this approach is that the most computationally intensive
steps - detecting landmarks and computing viewsheds - can
be done entirely offline by computers on Earth.

Such an approach has not been studied extensively in this set-
ting. Our main contributions can be summarized as follows:

• A novel method for procedurally extracting informative
landmarks that uses both terrain morphology and viewshed
analysis
• A well-defined metric for terrain informativeness (in the
sense of information-gain from visible landmarks)
• A suite of open-source QGIS plugins for extracting the
landmarks and computing the metric
• An analysis of Jezero Crater using these tools

2. RELATED WORKS
Terrain Relative Navigation

One well-studied method for localizing a robot (within a
pre-defined region) is to compare observations to known
terrain maps of the area. On Earth, this is often studied
in the context of localizing an image taken in mountainous
terrain [3], [4], [5]. These approaches use techniques such
as skyline edge detection and contourlet matching. In [5],
terrestrial pictures are aligned with topographic maps, using
semantic segmentation of the query image. Typically these
methods rely on a relatively-precise prior estimate of the
GPS location where the image was taken and tend to be
computationally demanding. A work highly relevant to our
proposed application is [6], in which the authors present a
method for building and maintaining a database of topograph-
ical landmarks that maximizes overall utility based on line-
of-sight bearing measurements for use by planetary rovers.
The authors use geometric dilution of precision (GDOP) as
a metric for localization accuracy. Omitted from this work
however is an explicit method for detecting these landmarks
or for computing regions of visibility.

On Mars, terrain relative navigation was implemented suc-
cessfully in the Mars 2020 Lander Vision System (LVS)
which helped guide Perseverance to a safe landing sight
during the descent stage [7]. Separate from the task of
lander hazard avoidance, using terrain for rover localiza-
tion is also well studied. In [8], various computer vision
techniques are investigated for their applicability to terrain
relative navigation at ground-level. Included in this work
is a discussion of the stereo vision, visual odometry, and
structure-from-motion systems used in the MER mission,
which work by observing the rover’s immediate surroundings
and allow for accurate local velocity estimation but are still
subject to drift. The authors conclude that there is still work
to do towards absolute localization relative to landmarks or
orbital imagery. Other approaches have been explored such as
[9], which considers aerial-to-ground localization using Mars
helicopter aerial maps. Finally, [10] describes concurrent
work at JPL that also features onboard processing of imagery
for the purpose of localization. In this approach, semantic
segmentation of captured imagery is compared to renders of
the terrain in order to fix rover pose within the martian fixed-
body coordinate frame.

Topographical Landmark Detection

The task of detecting recognizable topographical landmarks
is a relatively old problem, with works like [11] presenting
reliable methods for extracting peaks and ridges in terrestrial
settings. However, the availability of high-accuracy topog-
raphy data for Mars is relatively recent, coming in part from
NASA’s Mars Reconnaissance Orbiter HiRISE telescope, and
motivated largely by the need for high-accuracy DEM’s in
the Mars 2020 LVS [12]. Much of the subsequent work to
process these maps has been focused on either the LVS use-
case [7] or on determining regions of likely wheel-slippage
and overall traversability [13], [14].

Viewshed Analysis

Computing viewsheds is routine operation in geographic
information systems and is used in a wide variety of appli-
cations. In [15], viewshed analysis is used to optimize the
coverage of a network of radio masts. In [16], the author’s
consider using viewsheds to inform future lunar exploration
with an analysis of the errors introduced by uncertainty in
the DEM, concluding that the boundary of the viewsheds can
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be very sensitive to slight changes in elevation. Within the
domain of robotics, viewshed analysis has been used in works
like [17] to estimate the visibility of urban landmarks for use
by autonomous vehicles. Pre-existing viewshed calculation
tools are readily available and can be modified for use in our
application.

3. METHODOLOGY
Our process for analyzing the informativeness of a section of
terrain is comprised of three main steps:

1. Automatically detect potentially useful landmarks within
the scene using terrain morphology.
2. Compute the regions of visibility (viewsheds) for these
landmarks for a given observer height.
3. Using these viewsheds, for every point in the scene, de-
termine which landmarks can be seen and their range to the
rover. For a given measurement noise model, compute the
theoretical localization accuracy (GDOP) at the point.

This result is a raster image in which each pixel represents the
potential localization accuracy if the rover were to take mea-
surements from the corresponding location. Alternatively, we
can restrict our attention to a particular path within the scene
representing a hypothetical drive campaign.

Landmark Detection

We extract salient landmarks from the DEM by the following
process:

1. downsample DEM to ∼50 m/px
2. classify terrain features with the r.param.scale util-
ity from GRASS GIS
3. filter for regions identified as either peak or ridge
4. dilate and merge the resulting polygons (to reduce dis-
cretization artifacts)
5. extract point of maximal altitude for each polygon

This process generally results in landmarks that have the
following desirable characteristics:

• approximately the right scale with respect to the range of
motion of the rover
• widely visible throughout the scene (from ground level)
• readily identifiable within the rover’s camera frame

Empirically, each of these landmarks tend to correspond to a
large boulder, a well-isolated hill, or the peak of a ridge-line.
The set of candidate landmarks may be further refined in the
next step.

Computing Viewsheds

In GIS literature, a viewshed is the set of points that are
visible from a particular observer location via direct line-
of-sight. Symmetrically, it is the set of points from which
a particular landmark can be viewed [18]. We can use
pre-existing viewshed calculation tools to produce a binary
raster for each of our landmarks, in which the value of
each pixel represents the visibility of the landmark from the
corresponding location. These tools work on the principle of
casting a ray from the landmark to every point in the scene,
terminating when the ray first intersects the terrain, or when
it reaches the horizon. We specifically use the open-source
QGIS Visibility Analysis plugin, modified slightly
to account for the elevation of the observer above the terrain
when checking for ray intersections. In our case, we use the

height of perseverance’s mastcam (∼3m).

Additional considerations when producing these viewsheds
include the curvature of the celestial body and any atmo-
spheric refraction. Computing viewsheds for each landmark
is by far the most computationally intensive step in our
process. At this point, we may also want to discard unhelpful
landmarks whose viewsheds are degenerate (in the sense that
the intersection with the area of interest is too small to be
of use) or redundant (in the sense that the viewshed is fully
contained within the viewshed of another landmark, with no
significant baseline between them).

Localization Accuracy

Finally, we iterate over every point in the scene and examine
the corresponding points in the viewshed rasters in order to
determine what subset of n landmarks will be visible. We
then compute the range ri and azimuth ai from the rover to
each landmark. We model our measurements as being draw
from the distribution

âi = ai +N
(
0, σ2

i

)
which corresponds to an unbiased gaussian noise model with
parameter σi, which we refer to as the pointing accuracy.
The Cramer-Rao lower bound yields a covariance ellipse C
describing the distribution of resulting position estimates,
which is given by

C−1 =

n∑
i=1

1

riσi

[
sin2 αi − sinαi cosαi

− sinαi cosαi cos2 αi

]

Figure 2: The covariance ellipse C resulting from measure-
ments to landmarks with range ri and azimuth ai. Here,
GDOP = a + b.

We take the average of the major and minor axis of as
a quantification for size of this ellipse, which provides a
reasonable metric for the accuracy of this position estimate.
This corresponds with the standard notion of GDOP [19].

4. RESULTS
We ran our landmark-detection tool on a 30km (6000px)
square elevation map of Jezero Crater (indeed, the same DEM
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used in the Mars 2020 LVS). In total, 54 landmarks were
automatically detected, primarily composed of small hills in
the crater’s interior and sharp peaks in the ridgeline of the
crater rim.

Table 1: Geographic distribution of landmarks detected in
Jezero Crater DEM

Location Landmarks Detected
Crater Interior 21
Crater Rim 13
Crater Exterior 20
Total 54

Figure 3: Topographic landmarks automatically extracted
from a DEM of Jezero Crater (30km x 30km)

In order to gauge the pointing accuracy of bearing measure-
ments made to these landmarks, we consider the following
sources of error:

• the finite angular resolution of the camera
• the accuracy of the camera distortion model/reported pose
of the instrument
• our ability to recognize landmarks within an image

We take one of the monocular Navcams in Perseverance’s
main mast as our hypothetical sensor, which has a horizontal
resolution of 0.33 mrad/px [20], and assume no appreciable
noise in the distortion model or reported instrument pose.
By performing a study of a terrestrial analog image set, we
determined that landmarks can be reliably identified in an
image to within a standard deviation of ∼10px using standard
computer vision techniques that can easily run onboard. In
this study, we assumed the rover has at least a rough prior
estimate of its location. By consulting the pre-computed
viewsheds at this point, the rover prioritizes which landmarks
it should look for in its field of view. Overall these values

yields a pointing accuracy of σ ≈ 3.3 mrad, which we take to
be fixed for all measurements.

We then ran our terrain informativeness plugin on the DEM
using the automatically detected landmarks, the estimated
pointing accuracy, and the proper value for the instrument
height. The resulting raster shows a wide variety in accuracy,
ranging from GDOP ≈ 10m in the most informative regions
(e.g. immediately to the northwest of the three hills noted in
Figure 1) to GDOP > 100m in the least informative regions
(e.g. in the riverbed shown in Figure 5).

We also examine a hypothetical drive campaign by selecting
a random path through the scene, starting at Perseverance’s
landing site. As seen in Figure 6, the accuracy may change
rapidly along a continuous path as certain landmarks become
occluded or as new ones become visible.

Figure 4: Map overlay of Jezero Crater showing predicted
localization accuracy (GDOP) at every point

Figure 5: In the riverbed, the uncertainty effectively becomes
infinite as all landmarks become occluded by the banks on
either side
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Figure 6: Analysis of a hypothetical drive campaign through
Jezero Crater

(a) A potential rover path with bearing measurements and resulting
covariance ellipse at a particular location (40σ shown for clarity at
large scale)

(b) The predicted localization accuracy throughout the campaign
(capped at 85m) with the highest values occurring in the riverbed

5. TOOLS/PLUGINS
These tools are implemented as extensions for the open-
source QGIS software package. A separate processing plugin
exists for each main step: detecting landmarks, computing
viewsheds, and creating the final raster. The user may specify
the details of their application, including various aspects
of the desired landmarks, observer height, surface curva-
ture, atmospheric refraction, pointing accuracy, and estimator
quality metric. An additional plugin was developed that
accepts an arbitrary path through the scene (representing a
hypothetical drive campaign) and produces a video animation
of the rover moving along this path, highlighting the visible
landmarks at each point and rendering the resulting covari-
ance ellipse. For access to the suite of plugins, contact the
authors at hook@jpl.nasa.gov.

6. CONCLUSIONS
We consider a method for rover localization using topo-
graphical landmarks and establish a rough upper bound on
estimator quality. Our results are mixed but promising.
There are significant regions of the martian surface where

our estimator achieves GDOP values in the 10m range from
only a single set of observations. However, there are also
some large areas and numerous small pockets where quality
drops off significantly due to a lack of visibility. This is an
inevitable feature of landmark-based localization, and renders
our approach unsuitable as a sole method of local navigation.
The utility lies in the potential to augment existing techniques
by providing sporadic position estimates that are globally
registered, helping to correct any accumulated drift.

Our approach demonstrates other advantages. For instance,
since expected estimator quality can be pre-computed, mis-
sion planners and formulation studies can generate maps like
Figure 4 that highlight favorable and unfavorable regions in
order to inform their choice of route. Additionally, the com-
putational demands involved in visually detecting landmarks
and producing a solution are moderate. Indeed the Mars 2020
LVS demonstrated that tasks of this nature can be feasibly
performed on-board.

7. ACKNOWLEDGMENTS
The research was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration
(80NM0018D0004). Thanks to the Mars Perseverance entry,
descent, and landing team for furnishing Mars DEMs used in
this work. Particular thanks to Andrew Johnson.

REFERENCES
[1] B. K. Muirhead, A. Nicholas, and J. Umland, “Mars

sample return mission concept status,” in 2020 IEEE
Aerospace Conference, 2020, pp. 1–8.

[2] C. Wong, E. Yang, X.-T. Yan, and D. Gu, “Adaptive and
intelligent navigation of autonomous planetary rovers
— a survey,” in 2017 NASA/ESA Conference on Adap-
tive Hardware and Systems (AHS), 2017, pp. 237–244.

[3] G. Baatz, O. Saurer, K. Köser, and M. Pollefeys, “Large
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