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Abstract—Highly accurate localization of planetary robotic ex-
plorers is crucial for robust, efficient, and safe exploration and
path planning in unknown and unstructured planetary envi-
ronments. In these environments, where satellite-based radio-
navigation systems are unavailable, global localization can be
achieved by relying on registration of ground imagery to an
orbital map, X-band Doppler radio transmissions, or direct
observation of the robotic explorers in satellite imagery. While
these methods have proven to be effective, they rely heavily
on a human-in-the-loop. This paper studies the feasibility of
autonomous visual global localization of planetary robotic ex-
plorers in extreme and GPS-denied environments by using a
trained convolutional neural network (CNN) to obtain saliency
maps from semantic segmentation of ground imagery. The
saliency maps are registered to projected views of the terrain
elevation maps in the rover’s general region of operation to find
the optimal match that places tight constraints on the pose of
the robot in a Mars body-fixed coordinate system. We provide
details on the use of the DeepLab V3+ framework for semantic
image segmentation of Martian landscape imagery, including
fine-tune training of existing models on domain specific data.
Furthermore, we provide performance analysis of the proposed
method on a Martian landscape dataset obtained by NASA’s
Perseverance rover, and discuss the limitations of the proposed
method and future research directions.
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1. INTRODUCTION
In planetary missions, topographic mapping and accurate
landing site localization in a global reference system, and
with respect to other salient features in the landing site,
is crucial for determining the initial pose of the robot and
enabling safe and efficient short- and long-range traverses to
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Figure 1: Visualization of landing ellipse size for Mars
Pathfinder, Phoenix, InSight, and Curiosity, on the target
landing area of NASA’s Perseverance rover on Mars, Jezero
Crater. Credit: NASA JPL-Caltech.

accomplish the science objectives of the mission. In early
Mars exploration missions (e.g., NASA’s Mars Exploration
Rovers (MER)), the initial localization of the landing site
was accomplished by the ground team within eight days of
landing for both rovers [1]. This activity involved extensive
data collection and tracking of the communications link in the
inertial reference frame, reconstructing the entry, descent and
landing (EDL) in returned descent images, and registration of
features in the lander and orbital imagery. While localization
was achieved with a sufficient level of accuracy, it required
significant human intervention. NASA’s most recent Mars
exploration mission, the Perseverance rover, requires fast and
highly accurate localization and navigation techniques, as the
rover is tasked with gathering samples that could be returned
to Earth by the Mars Sample Return campaign being planned
by NASA and the European Space Agency. The rover is set
to have long-range traverses at higher speeds than previous
rover missions in order to gather a diverse set of martian
rock and regolith samples throughout the life of the mission.
A future Mars sample fetch rover would also rely on high-
precision localization to retrieve the sealed samples from the
Martian surface. The Perseverance rover relied on Terrain
Relative Navigation (TRN) in order to land more precisely in
a challenging but geologically interesting area. As shown in
Figure 1, while past Mars missions disqualified scientifically
compelling landing sites due to hazardous terrain within the
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Figure 2: Semantic segmentation and skyline delineation demonstrated on a Martian panorama (top), with corresponding
semantic segmentation prediction map (middle) and delineated skyline contour (green, bottom).

landing ellipse, the TRN method shrunk the area of the
landing ellipse of uncertainty for the Perseverance rover by
a factor of ten, as compared to the Mars Curiosity mission.
This made it possible to target a landing ellipse with major
and minor axes of 7.7 km and 6.6 km, providing access to
previously inaccessible landing sites [2].

Using imagery obtained during the descent stage, the TRN
method relies on registration of salient perceptual features to
an orbital map to refine the rover’s position accuracy to 40
m of position error until 2000 m above the surface, where
the rover is separated from the back-shell. Although TRN
has proven to be highly effective in shrinking the landing
ellipse of uncertainty, illumination variations and sensor mea-
surement noise could introduce differences between aerial
imagery and the onboard orbital map, which could lead to
increased position estimation uncertainty. Before the rover
can safely and efficiently start navigating the environment, a
high precision initial localization is required to establish the
rover’s position in a Mars global reference frame. In plane-
tary applications where a Global Positioning System (GPS)
is unavailable, localization can be achieved by matching
perceptual features in terrain images obtained by the rover’s
onboard camera to an orbital map, analyzing X-band Doppler
radio transmissions using satellites orbiting the planetary
body, or by direct observation of the rover’s landing site in
satellite imagery. It is advantageous to enable a fully on-
board localization capability, not reliant on external satellite
communications that can be used for landing site localization,
and periodic robot localization during its mission, to reduce
the accumulated drift in estimated robot trajectory.

This paper presents a vision-based localization method for
planetary robotic explorers that relies on a trained convolu-
tional neural network (CNN) to obtain saliency maps from
semantic segmentation of terrain imagery. We study the prob-
lem of efficient and robust extraction of landscape contours
and skyline delineation through semantically segmenting the
terrain and sky regions of distant landscapes, as shown in
Figure 2, so that unique and distinctive contours of peaks,
boulders, and general topography of the local environment
can be used as points of reference to establish localization
on digital elevation maps (DEMs) obtained from the Mars
Reconnaissance Orbiter’s HiRISE camera. Global position
estimates are obtained by finding the optimal match between
contours of the delineated skyline and those of rendered
skylines in the rover’s general region of operation, based on
projected views in the digital elevation models.

The rest of this paper is organized as follows: in Section 2 we
discuss the related work with focus on semantic segmentation
and planetary rover localization. Our CNN-based global lo-
calization method is presented in Section 3 and experimental
results are presented in Section 4. Finally, Section 5 discusses
the conclusion, and future research directions.

2. RELATED WORK
Our work lies in the intersection of semantic image seg-
mentation and localization of planetary rovers in large-scale
and unstructured environments. Thus, we review the related
literature in these domains. Accurate on-board localization of
planetary rovers has been an active area of research [3], [4],
[5], [6]. High-precision autonomous localization is an im-
portant capability for on-line path planning and autonomous
navigation of mobile planetary robots (e.g., ground or aerial
robots) to ensure their safety and maximize their science
return. Most of the current frameworks primarily rely on
passive vision-based localization and pose estimation meth-
ods, and multiple sensing modalities can be coupled in order
to increase the position estimation accuracy of the robot. In
most terrestrial robotic applications, a low-cost and efficient
localization method is to fuse proprioceptive data, like that
from an IMU or onboard vision system [7], with GPS data.
In planetary applications, where GPS signal is unavailable,
vision [8], [9], or wheel odometry [10] or combination of
both are used to propagate the pose of the robot [11]. While
the systems have been effective in planetary operations, they
are often terrain-dependent and could suffer from drift due
to accumulation of errors in estimated robot motions, par-
ticularly over long-range traverses in feature-less and sandy
environments [8]. Off-board localization methods using
satellite imagery can be used for high-precision localization
of planetary robots [12], but these methods require reliable
satellite communications and make the localization pipeline
critically dependent upon remote systems. Localization of
a planetary exploration rover by registering ground imagery
from the rover to a known aerial map is studied in a Mars
analogue environment in [13].

Recently, active localization [5] and perception-aware path
planning methods have been proposed [6] in order to use the
feature-rich terrain in the robot’s local environment to reduce
localization and pose estimation error. Moreover, some recent
research investigates the use of simultaneous localization
and mapping (SLAM) algorithms for autonomous planetary
rovers to reduce both the relative and absolute localization
errors [14], [15], [16]. SLAM is a commonly used method
to enable robots to create a map of an unknown environment,
while localizing themselves in the map at the same time [17],
[18]. Geromichalos et al. [19] propose a SLAM algorithm
that relies on matching high-resolution sensor scans to the
local map created online to improve relative localization.
The method relies on matching the current local map to the
orbiter’s global map at discrete times to avoid issues with
drifting in absolute localization. An adaptive visual SLAM
algorithm for performing traversability analysis and global
localization is presented in [15]. A visual SLAM method for
planetary UAVs that registers images with known DEM data
is presented in [16]. To overcome the scale and appearance
difference between on-board UAV images and a pre-installed
digital terrain model, topographic features of UAV images
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and DEM are correlated in the frequency domain via cross
power spectrum.

In [20], a method of image-based planetary rover localization
is presented by comparing detected skylines in images to
DEM data. However, this localization method is reliant upon
a wide field of view (FOV) panoramic image, and the skyline
is delineated based on luminance in grayscale images. Lo-
calizing a robot by comparing observations to known terrain
maps can be studied in the context of localizing an image
taken in mountainous terrain [21], [22], [23]. Typically, these
methods rely on a relatively-precise prior estimate of the GPS
location where the image was taken. In [22], imagery of ter-
restrial terrain are aligned with topographic maps using edge
detection, specifically of silhouette edges. In [23], terrestrial
imagery are aligned with topographic maps using semantic
segmentation of the query image. However, both of these
methods require geotagged imagery, indicating a relatively
small region of uncertainty where the photo was taken as an
input and are unsuitable for global position estimation.

In [21], a method for global localization of monocular camera
images by obtaining a rough position estimate, on the range
of 100 m, of an image taken anywhere in a large DEM
map is introduced. The method involves using color and
gradient likelihoods to detect the skyline in a query image
and representing this skyline as a collection of small, normal-
ized, overlapping sections dubbed “contourlets”. These are
compared to DEM-generated contourlets found by rendering
a 360-degree FOV projected skyline from an xy grid of points
at ∼ 100 m spacing to select top location candidates. The
entire skyline of the query image is then compared with the
ICP algorithm [24] to corresponding FOVs in the top render
candidates using a sliding window and the top ICP match
is selected as the most-likely location and orientation of the
image. In [25] and [26], a CNN-based approach to finding
skylines trained on labels generated through Canny edge de-
tection [27] and Hough Voting [28] is presented. The method
adapts the MOSSE correlation filter [29] for determining a
position estimate of the query frame with GPS-level accuracy
by rendering a view based on DEM data from a known
camera heading and FOV at each point in an xy grid of points
surrounding the true location of the vessel. The MOSSE filter
correlation score between the query image and each rendered
view is computed, with the final position estimate based
on a second-order polynomial fit of the maximum MOSSE
correlation scores in the position search grid.

Semantic segmentation is a means of understanding an image
at the pixel level. That is, to predict a class label representing
each pixel in an image and define connected components of
pixels with the same label [30], [31]. DeepLab uses Deep
Convolutional Neural Networks for performing semantic seg-
mentation [32], [33], [34], [35]. The current version of
DeepLab utilized in this paper, DeepLab V3+, incorporates
Atrous Convolution, Fully Connected Conditional Random
Fields, Atrous Spatial Pyramid Pooling, and encoder-decoder
modules. Alternatives to semantic segmentation for finding
connected components in images include modern grab-cut
style segmentation implementations based on Graph Cut [36],
[37], such as [38]. These methods, however, typically rely
on some user input to perform the object or foreground-
background segmentation. Grab-cut based object segmenta-
tion could be coupled with CNN-based object detection meth-
ods to remove the need for human input in the segmentation
pipeline, but this would not be an efficient alternative to Deep
Learning-based tools developed for semantic segmentation
(e.g., DeepLab) for performing object segmentation with

pixel-wise labels. There are modern alternative network
architectures that compete with and occasionally outperform
DeepLab V3+ in semantic segmentation [39], [40], [41].
However, DeepLab V3+ was selected due to the high per-
formance, the open-source tensorflow implementation, and
the well documented user instructions. In [42] and [43], a
method and dataset are presented for semantic segmentation
of Martian terrain into seventeen terrain categories. Notably,
sky is not included as a class in these works, as their purpose
is for traversability analysis, rather than localization, based
on the segmented terrain.

3. METHODOLOGY
Semantic Segmentation

Semantic segmentation is performed using the most up-to-
date open-source version of DeepLab V3+ [35]. We perform
fine-tune training of existing models, namely MobileNet-v2
[44] and Xception65 [45] pretrained on the ADE20k dataset
[46], on domain specific data composed of 3-channel monoc-
ular camera images of Martian landscapes taken by the Cu-
riosity Rover, selected from NASA JPL’s publicly available
Planetary Data System (PDS) Image Atlas [47]. 24 images
were selected and annotated using the labelme tool [48], with
20 used for training and 4 for validation. The model was
trained for 750 iterations, with a batch size of 2 images.
This is a short fine-tune training for a semantic segmentation
model, as the model quickly learns to distinguish between the
two classes it is trained to identify at the pixel level, “terrain”
and “sky”. Inference is performed with the trained model
to generate semantic segmentation prediction maps of query
images, such that each pixel is identified and labeled as one
of the two aforementioned classes.

Test Data Selection

The test data is composed of 39 monocular camera images of
Martian skylines taken by the Perseverance Rover Mastcam-
Z, selected from the publicly available PDS Image Atlas [47].
The semantic segmentation model was trained on images
taken by the Curiosity rover, while all experimental results
presented in this paper use images taken by the Perseverance
rover to ensure sufficient distinction between the training and
test sets and to demonstrate the generalization capabilities of
our method. This test set is the newest publicly available
data, released on August 20, 2021, and is composed of images
and corresponding labels, including ground truth location and
orientation, for the first 90 sols (0 − 89) of the Perseverance
mission on Mars. A hand-selected set of images containing
Martian terrain and skylines is used rather than a random
sampling, as the majority of images in the set do not contain
skylines, which are necessary for our localization method.

Skyline Delineation

The “skyline” contour in query images are delineated by
finding the highest pixel in each column of the “terrain”
cluster in the semantic segmentation prediction map. If
any columns are segmented entirely as “sky”, the contour is
assigned a value of “NaN” in that spot such that a lack of
detected “terrain” will not impact position estimation. How-
ever, our set of images was selected such that a visible skyline
spanning the width of the image is present in all samples.
Currently, the semantic prediction map is used rather than
the semantic probability map for skyline delineation, though
a probabilistic representation of the skyline based on the
joint probability distributions of “terrain” and “sky” classes
is under consideration for future investigation. Optionally,
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we can cluster all pixels in a frame labeled as “terrain”
with the Density-based spatial clustering of applications with
noise (DBSCAN) algorithm [49] to remove noisy terrain
pixel detections from the skyline contours. However, we
did not find this step necessary with our Martian landscape
model and have omitted it to decrease run time of localization
calculations.

DEM Renders

To compare the detected skyline contour to a known map
based on DEM data, the DEM data is converted to the same
format as the detected skyline contour. An open-source tool
named “Horizonator” [50] is used to render terrain data to
simulate the view that would be captured by the rover’s
camera from a given location, orientation, and FOV. This tool
uses an equi-rectangular projection and assumes the planet is
flat locally, which is not problematic in our application with
relatively short view horizons. Parameters for this tool can
be tuned, and for our application we generate a 3-channel
image displaying a 360-deg FOV projected view with a 5 km
view horizon from ground level at each point in an xy grid at
100 m spacing. The skyline contours from the DEM renders
are delineated similarly to those of the semantic segmenta-
tion predictions. However, in lieu of performing semantic
segmentation, a binary mask segmenting all rendered terrain
from all background pixels is used.

Location Estimation

In our implementation, a rough, global position estimate is
obtained using a method loosely inspired by [21]. Before
localizing any query images, a prior is established by pre-
processing DEM data in the rover’s region of operation to
reduce position estimation run-time. The prior processing
steps include:

1. Selecting a grid of candidate locations for localizing the
rover, with span and resolution based on application (e.g., 4
km2 at 100 m resolution)
2. Downloading the DEM data covering the span of points,
with an extension in all directions equal to the view horizon
(e.g., 5 km)
3. Rendering a 360-degree FOV projected view from each
grid point
4. Extracting the skyline contours from the rendered views

To estimate the position of each query image, the delineated
skyline is compared to a sliding window of the 360-degree
FOV rendered skylines. The corresponding FOV (i.e., win-
dow size) and camera pitch are found in the accompanying
image label and are considered known, while the camera
roll is assumed to be 0 deg. The comparison at each step
of the sliding window (e.g., 1-deg steps) is calculated using
root-mean-square error (RMSE) on the equal length skyline
contours to find the best view angle at each point, a deviation
from contourlet matching and ICP used in [21]. Using
the best view angle from each candidate point, the position
scores, Px,y , are calculated through inversion, normalization
with the best candidate, and exponentiation such that all
scores are ≤ 1.0 and the distribution of scores better distin-
guishes the top candidates, as given by Px,y = (RMSEmin

RMSEx,y
)2.

Currently, the predicted heading and location are selected at
the heading and position where the overall minimum RMSE
was observed. Given the discrete representation of candidate
locations, an improvement would be extracting the local max-
imum of the region of highest position score density based on
approximating the grid of position scores as a second-order
polynomial surface, as in [25].

4. EXPERIMENTAL RESULTS
The method is tested on 39 3-channel monocular camera
images of Martian skylines taken by the Perseverance Rover
Mastcam-Z, selected from the publicly available PDS Image
Atlas [47] as described in Section 3. The resolution and
FOV of these images may vary, with typical resolutions and
FOVs of 1648 x 1200 pixels and 20.4 x 14.8 deg. Details
on image capture and pre-processing steps, the Perseverance
Rover Mastcam-Z, and the image labels are available at [47].

Semantic Segmentation

Semantic segmentation between martian terrain and sky
proves to be a fairly easy to solve semantic segmentation
problem, as seen in Figure 3 - examples 1 and 2. The
martian terrain in our landscapes is feature and texture-rich,
while the sky is devoid of any features or texture, suggesting
that the model quickly learned to segment based on the
amount of texture in a region. Because of this, our semantic
segmentation model may incorrectly segment distant, hazy
mountain ranges (see Figure 3 - example 3) or texture-less
faces of large, smooth boulders (see Figure 3 - example 4).
Due to the small training set of 20 images that did not include
these environments, our model did not learn to segment these
regions as “terrain”. Unlike traditional methods for skyline
delineation based on, e.g., Canny Edge Detection, this can
easily be overcome by fine-tuning the model with a more
diverse train set including a few examples of these types of
environments. Neither of these errors proves problematic
for the skyline delineation and position estimation results
presented later in this section, as segmenting the patches of
the boulders as sky does not affect the delineated skyline and
the distant, hazy mountain range is past the 5 km view horizon

Figure 3: Semantic segmentation inference results demon-
strated on various images collected by the Mars Perseverance
Rover, with corresponding color map.
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used in the rendered views.

Skyline Delineations

To demonstrate the utility of this method, we compare the de-
lineated skyline of the Martian terrain image, obtained from
the semantic segmentation prediction, to the corresponding
delineated skyline of the rendered view with matching ground
truth location, camera orientation, and FOVs. In general
the skyline delineation method performs very well, with
accurately delineated skylines in the images taken by the
Perseverance rover. Additionally, the corresponding rendered
views and skylines closely match, with full skyline matching
RMSE errors of ∼ 10 pixels, corresponding to ∼ 0.3 de-
grees, detected for the majority of test images. The notable
exception is the result seen in Figure 4 - example 4 in which a
portion of the rendered skyline is missing due to a rendering
error. This error can occur if the landscape is either outside of
the region covered by the DEM used to generate the renders
or is outside the view horizon (i.e., maximum distance to
render), a parameter selected during the rendering step. For
skylines outside the view horizon, this may be permissible
as the semantic segmentation prediction will likely match
(see Figure 3 - example 3). In this example, however, the
region omitted is correctly segmented as terrain, leading to
a full skyline matching RMSE error of ∼ 2.0 degrees. This
will cause the ground truth location and orientation to not be
selected in the position estimation results, but can be resolved
by including these regions in the rendered views with full
DEM coverage and well-selected view horizons.

Figure 4: Image and corresponding rendered view, generated
with the Horizonator tool using ground truth information
from the image label, with delineated skylines.

Location Estimation

In Figure 5, we show that our skyline delineation method
using semantic segmentation predictions can be used to ob-
tain an accurate global position estimate. These results show
an xy grid of candidate location points, with position scores
based on how accurately the delineated skyline matches with
a corresponding window of the rendered skyline, as detailed
in Section 3. The delineated skyline in this example contains
unique contours that closely match with those in the corre-
sponding rendered views from the ground truth location of
the rover, and does not closely match with those rendered
from other position candidates. Additionally, the estimated
heading is correctly identified within ±1 degree, which cor-
responds to the step size used for RMSE comparison.

Figure 5: Successful location and orientation estimate, with
respect to Perseverance rover landing site. 1.0 is the maxi-
mum position score.

However in the absence of salient features in the delineated
skyline, our method will not detect a precise and accurate
position estimate. In Figure 6 we show that our position
estimation method assigns a relatively high position score
to a large portion of xy grid points in such situations. The
delineated skyline from the image in this example contained
flat, uninteresting contours that loosely and relatively evenly
matched some window from many of the location candidate
points. To autonomously detect and reject such position
estimates from state estimation filters, one could calculate the
standard deviation on the distribution of high scoring position
candidates and reject those with standard deviations above a
threshold.

5. CONCLUSION AND FUTURE WORK
In this paper we consider a method for onboard, automated
global position estimation of planetary robotic explorers by
performing semantic segmentation for skyline delineation of
martian terrain images. We demonstrate that the proposed
method of using semantic segmentation for skyline delin-
eation is a well-founded method with accurate performance
by comparing delineated skylines to those of rendered views
based on DEM data from a rover’s ground truth position and
FOV. We also show that our global localization method can
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Figure 6: Imprecise location and orientation estimate, with
respect to Perseverance rover landing site. 1.0 is the maxi-
mum position score.

correctly localize images in a Mars body-fixed coordinate
system based on these delineated skylines by comparing
them to delineated skylines from rendered views in a rover’s
general region of operation (e.g. a 4 km2 region surrounding
the rover landing site). In this method, unique and distinctive
contours of all landscape features in a rover’s local environ-
ment, including peaks, boulders, and general topography, are
efficiently and robustly extracted and used for global position
estimation. However, our method is dependent upon the
presence of salient features in the delineated skyline, as the
absence of such features can lead to perceptual aliasing and
position ambiguity.

For this reason, our future work will strive to increase robust-
ness of our localization method by investigating a method
to extract peaks from the semantically segmented skyline
and correlate these peaks to known landmarks. In this
way, only the salient features will be used for localization
and the regions of flat, nondescript skyline will be omitted.
Additionally, our future work will be towards perception
aware localization, with global path planning and camera
orientations influenced by the amount of useful information
(i.e., density and quality of salient features) expected in a
region based on analysis of the DEM. These future works
will be in conjunction with the future work of [51], which
autonomously detects highly-visible Martian peaks and land-
scape features in DEM data, and calculates an upper bound on
predicted localization accuracy from bearing measurements
made to these landmarks through use of a QGIS plugin for
viewshed analysis.
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