
A Variant of The Unscented Kalman Filter for
Highly Non-Linear State Estimation

Russell Schwartz
Carnegie Mellon University

rschwar2@andrew.cmu.edu

Ian Krause
Carnegie Mellon University

ikrause@andrew.cmu.edu

Abstract—State estimation for non-linear systems is challeng-
ing, even when we restrict our belief model to a Gaussian
distribution, as in the case of the Kalman Filter. The EKF
and UKF both use approximation schemes to make the problem
tractable. The UKF often achieves better performance over the
EKF. In part, it does this by consulting the dynamics model on
a larger portion of the state space through its selection of so-
called sigma-points. In this work we explore a novel variant of
the usual sigma-point selection scheme that selects more than
the usual 2n+ 1 points from more than one distance about the
mean. These modifications help to resolve some of the error
experienced by the original UKF (especially in systems with
strong 3rd order behavior) at the cost of modestly increased
computational cost. We compare this method to baseline EKF and
UKF implementations in a number of simulated environments,
including the tracking of a double-inverted-pendulum and a
SLAM task. Our proposed “UKF2” exhibits increased state-
estimation accuracy and a lower rate of divergence over both
the EKF and UKF in all of these systems.

I. INTRODUCTION

In the fields of robotic control, target tracking, autonomous
driving, robotics at large, and beyond, accurate state estimation
is a fundamental first step towards achieving correct behavior
of the overall system. The Bayesian probabilistic perspective
of gives rise to the Bayes Filter algorithm, which maintains
a probability distribution over the state space [9]. This distri-
bution, called the “belief”, can be updated by the filter upon
execution of an action of receipt of a measurement, accounting
for noise in these processes. This paradigm allows for a state
estimator to make fuller use of the information available,
and the availability of uncertainty information enables greater
robustness in downstream systems.

Out of the many different implementations of the Bayes
Filter (the Histogram Filter, Particle Filter, Kalman Filter, ...)
few are more popular than the Kalman Filter (KF), which
has the important property of being able to operate efficiently
even in high dimensional spaces [1]. The KF achieves this
performance by making two concessions. First, it restricts the
space of possible belief distributions to multivariate Gaussian
distributions, which are analytically manageable, but cannot
represent multi-modality. Second, it is restricted to purely
linear systems which have Gaussian noise models. This re-
striction leads to a compact analytic solution to the optimal
Bayes Filter equations. However, many systems encountered
in practice are non-linear. Luckily, methods exist which extend

Fig. 1: Visualization of the proposed modified unscented trans-
form. Sigma-points are selected from k = 2 symmetric shells
about the mean (±2.5,±5). These points are then transformed
by the non-linear dynamics, and a Gaussian is fit to their
image. The result is a close approximation to the optimal
Gaussian. The additional outer sigma-points help capture the
otherwise-unobserved 3rd-order behavior.

the KF algorithm to these non-linear systems, at the cost of
optimality.

The Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF) are the two most-popular such methods, and
we describe them in details in Section III. The EKF, which
operates on the principle of Taylor approximation, is generally
less accurate then the UKF, which samples the state-space at a
small number of points. Intuitively, this performance increase
is in part because the UKF samples more of the state space
and thus consults more of the dynamics model [1]. In a sense,
the UKF is an interpolation between single-sample methods
(like the EKF) and many-sample methods (like the Histogram
Filter).

In this work we introduce a novel variant of the UKF
algorithm that samples additional sigma-points (beyond the

conventional 2n + 1) from multiple distinct “shells” about
the mean before performing the Unscented Transform. For
highly non-linear systems, this modification enables the filter
to better track higher-order behavior of the dynamics, while
being less sensitive to regime changes. We demonstrate the
superior performance of this variant, dubbed UKF2, on a
number of simulated dynamic systems including a 2D SLAM
problem and an inverted double-pendulum tracking problem.

II. RELATED WORK

Rudolf Kálmán originally solved the Bayes Filter optimal
update rules for a Gaussian parametrization in [6], branching
an entire field of research centered around efficient high-
dimensional state estimation [1].

McGee and and Schmidt, members of the NASA Ames
Research Center, developed the Extended Kalman Filter (EKF)
for use in the Apollo program [8]. Their method addresses
state estimation for nonlinear series using first-order Taylor-
series expansions. See III-C.

Julier and Uhlmann later introduced the Unscented Kalman
Filter (UKF) in [11]. Much like the Extended Kalman filter,
their method addresses nonlinear systems but instead uses
the sampling-based Unscented Transform to propagate uncer-
tainty. They elaborate on their method in [5], in which they
discuss a general sigma-point selection framework. However,
they focus on minimal sigma-point sets, which contain the
fewest number of points in order to uniquely define the desired
Gaussian. See III-D.

A number of other non-linear extensions have been pro-
posed, including the the Second-Order EKF (EKF2) and
Polynomial EKF (PEKF) [3], [10]. Both of these methods
either directly compute higher order information (in the form
of an explicit Hessian) or approximate these terms via forward-
difference methods computed at sigma-points. The resulting
methods perform only marginally better than the UKF, are
complex to implement, and scale poorly in higher dimension.

III. BACKGROUND

A. Bayes Filter

The Bayes Filter is a general probabilistic framework for
state estimation in which the current belief of the state is
represented by a probability distribution over the state space.
This belief is updated upon the execution of an action or the
receipt of a measurement. These computations are often called
the Predict Step and the Update Step respectively. The belief
can be represented non-parametrically, as in the Histogram
Filter or Particle Filter, or parametrically, as in the Kalman
Filter. We use the following notation to describe a general

time-invariant non-deterministic dynamic system model.

State Vector: x

Control Input: u

Measurement: z

Dynamics Noise: w

Measurement Noise: v

Dynamics Model: f(x, u, w)

Measurement Model: h(x, v)

A system definition consists of a definition for f , a definition
for h, and probability distributions for w and v. Note that all
vector quantities may have arbitrary dimensionality. We also
require our system to have the property that measurements
are independent of one another when conditioned on the state.
This is called the Markov property.

Writing our belief as Bel(xt), the general Bayes filter
Predict and Update are as follows. A full derivation is available
in Appendix VII-A. The literature often presents these steps as
a single computation computed sequentially, but in reality they
may be decoupled, and can indeed be invoked an any order
independent of one another to accommodate a mixed stream of
actions and measurements. The computations is summarized
in pseudocode as Algorithms 1 and 2:

Algorithm 1 Bayes Filter Predict Step
Input: state belief Bel(x), control input u
Output: updated state belief Bel′(x)

1: for x′ in the state space do
2: Bel(x′)←

∫
p(x′ | u, x)Bel(x)dx

3: return Bel′(x)

Algorithm 2 Bayes Filter Update Step
Input: state belief Bel(x), measurement z
Output: updated state belief Bel′(x)

1: for x in the state space do
2: Bel′(x)← p(z | x)Bel(x)

3: η ← 1/
∫
Bel′(x)dx # normalization

4: Bel′(x)← η ·Bel′(x)
5: return Bel′(x)

The KF, EKF, and UKF represent the state belief paramet-
rically as a single unimodal Gaussian distribution N (µ,Σ).
They also restrict to systems with Gaussian noise models.
The properties of Gaussians allow us to write the Predict and
Update steps explicitly in analytic form.

B. Kalman Filter

The Kalman Filter is applicable to linear systems of the
form:

Dynamics: f(x, u, w) = Ax+Bu+D + Lw

Measurement: h(x, v) = Cx+ E +Mv

Dynamics Noise: w ∼ N (0, R)

Measurement Noise: v ∼ N (0, Q)
(1)

The Bayesian Update and Predict steps are computed as
follows. The full derivation can be found in [4].

Algorithm 3 Kalman Filter Predict Step
Input: state estimate (µ,Σ), control input u
Output: updated state estimate (µ′,Σ′)

1: µ′ ← Aµ+Bu+D
2: Σ′ ← AΣA⊤ + LRL⊤

3: return (µ′,Σ′)

Algorithm 4 Kalman Filter Update Step
Input: state estimate (µ,Σ), measurement z
Output: updated state estimate (µ′,Σ′)

1: Sxz ← ΣC⊤

2: Szz ← CΣC⊤ +MQM⊤

3: K ← SxzS
−1
zz # Kalman gain

4: ẑ ← Cµ+ E
5: µ′ ← µ+K(z − ẑ)
6: Σ′ ← Σ−KCΣ
7: return (µ′,Σ′)

For linear systems with Gaussian state belief, the KF is
optimal. It is also very efficient, even in higher dimensions.
However, in the real world purely linear systems are few
and far between. The EKF and UKF provide near-optimal
extensions of the KF for non-linear systems.

C. Extended Kalman Filter

The EKF extends the KF to non-linear systems by comput-
ing a linear approximation of the system at each timestep, and
then applying the KF update rules. This approximation takes
the form of a first-order Taylor expansion:

f(x, u, w) ≈ f(x0, u0, w0) + Fx(x− x0) + Fu(u− u0)

+ Fw(w − w0)

where

Fx =
∂f

∂x
and Fu =

∂f

∂u
and Fw =

∂f

∂w

evaluated at a linearization point (x0, u0, w0) chosen to be the
current state mean x0 = µt, the given control u0 = ut, and
the mean noise value w0 = E[w]. Similarly, we approximate
the measurement model:

h(x, v) ≈ h(x0, v0) +Hx(x− x0) +Hv(v − v0)

where

Hx =
∂h

∂x
and Hv =

∂h

∂v

The full procedure is as follows. To make the relationship to
the Kalman Filter clear, we use the same coefficient naming
scheme for the linearized system as in (1).

Algorithm 5 Extended Kalman Filter Predict Step
Input: state estimate (µ,Σ), control input u
Output: updated state estimate (µ′,Σ′)

Linear Approximation
1: x0 ← µ, u0 ← u,w0 ← E[w]
2: A← ∂f

∂x , B ←
∂f
∂u , L←

∂f
∂w

KF Predict Step
3: µ′ ← f(x0, u0, w0)
4: Σ′ ← AΣA⊤ + LRL⊤

5: return (µ′,Σ′)

Algorithm 6 Extended Kalman Filter Update Step
Input: state estimate (µ,Σ), measurement z
Output: updated state estimate (µ′,Σ′)

Linear Approximation
1: x0 ← µ, v0 ← E[v]
2: C ← ∂h

∂x ,M ←
∂h
∂v

KF Update Step
3: Szz ← CΣC⊤ +MQM⊤

4: Sxz ← ΣC⊤

5: K ← SxzS
−1
zz # Kalman gain

6: ẑ ← h(x0)
7: µ′ ← µ+K(z − ẑ)
8: Σ′ ← Σ−KCΣ
9: return (µ′,Σ′)

The EKF algorithm is very popular, in part for its efficiency.
Each iteration requires only 1 query to the dynamics model,
and 1 call to the jacobians. In practice, the required jacobians
may be computed by evaluating a user-provided symbolical
derivative, or by auto-differentiation of the system model.
This method of re-linearizing at every timestep can be very
accurate, especially when the filter is run at a high rate
or when uncertainty is low relative to the C2-smoothness
of the dynamics. However, for highly non-linear systems,
greater accuracy can be obtained by using a higher-order
approximation scheme, such as the UKF.

D. Unscented Kalman Filter

The UKF works by sampling the state space at a set X of so-
called “sigma-points” which are selected near the mean of the
state estimate. These points are then passed through the system
dynamics, and a Gaussian is fitted to the transformed points.
These sigma-points each have an associated weight w that
scales their contribution to the final distribution. We require
that these weights sum to 1, however it is actually possible for
some of them to be negative. The conventional implementation
of the Unscented Transform selects these points to include:

• 1 point at the mean of Bel(xt):

X0 = µt with w0 = 1− 1

α2

• 2n points distributed uniformly on a level surface of
Bel(xt):

Xi = µt ± α(
√

nΣt)i with wi =
1

2nα2

where n is the dimension,
√
M is a positive semi-definite

matrix square root, and (M)i is the ith column of M . We
then propagate the points through the non-linear function of
interest Y = f(X) and recover the mean and covariance:

µy =
∑
i

wiYi

Σyy =
∑
i

w̃i(Yi − µy)(Yi − µy)
⊤

where w̃i = wi for all points except for the mean, which has
its weight adjusted to better capture higher-order behavior of
the system:

w̃0 = w0 + (1− α2 + β)

For Gaussians, the optimal choice of β is 2 [5]. When
performing the Update Step, we will also need to compute
the cross-covariance:

Σxy =
∑
i

w̃i(Xi − µt)(Yi − µy)
⊤

When the noise model is non-additive, we perform the
unscented transform on the joint spaces

[
x | w

]
and

[
x | v

]
formed as the product of the state space and respective noise
spaces. This has no affect on µy or Σyy, but introduces
some unwanted elements into Σxy . Luckily, the noise can be
marginalized out by simply extracting the appropriate block.
This entire process is summarized in Algorithms 7 and 8.

Algorithm 7 Unscented Kalman Filter Predict Step
Input: state estimate (µ,Σ), control input u
Output: updated state estimate (µ′,Σ′)

Form Joint State/Noise Space

1: µ[x|w] ←
[

µ
E[w]

]
2: Σ[x|w] ←

[
Σ 0
0 var[w]

]
Unscented Transform

3: X , w ← select sigma points(µ[x|w],Σ[x|w])
4: X ′ ← f(X , u)
5: µ′ ←

∑
i wiX ′

i

6: Σ′ ←
∑

i w̃i(X ′
i − µy)(X ′

i − µy)
⊤

7: return (µ′,Σ′)

Algorithm 8 Unscented Kalman Filter Update Step
Input: state estimate (µ,Σ), measurement z
Output: updated state estimate (µ′,Σ′)

Form Joint State/Noise Space

1: µxv ←
[

µ
E[v]

]
2: Σxv ←

[
Σ 0
0 var[v]

]
Unscented Transform

3: X , w ← select sigma points(µ,Σ)
4: Z ← h(X , u)
5: ẑ ←

∑
i wiZi

6: Szz ←
∑

i w̃i(Zi − µy)(Zi − µy)
⊤

7: Sxz ←
∑

i w̃i(Xi − µ)(Zi − µy)
⊤

KF Update Step
8: K ← SxzS

−1
zz # Kalman gain

9: µ′ ← µ+K(z − ẑ)
10: Σ′ ← Σ−KCΣ
11: return (µ′,Σ′)

The UKF has some distinct advantages over the EKF. It
requires no differentiation, and it is able to better capture
2nd and 3rd order behavior of the system. However, it is less
numerically stable due to the required matrix square root, and
it is more computationally expensive, requiring |X | = 2n+ 1
queries to the dynamics function. For these reasons, combined
with the increased complexity to implement, the UKF is not
nearly as popular as the EKF in practice [1].

IV. METHODOLOGY

We present our proposed modification to the UKF, com-
ment on implementation details, explain our testing simulation
framework, and then introduce the dynamic systems that will
be used to evaluate filter performance.

A. Modified Unscented Kalman Filter

Our primary modification to the UKF consists of sampling
additional sigma-points by taking multiple shells of points

Fig. 2: Example of conventional scaled sigma point selection
in 2D (α = 0.4)

with different scaling factors α1, · · · , αk. The weights are
selected in a similar manner to the conventional UKF, but
are then normalized across the shells. This is consistent with
the general weight assignment scheme introduced in [5]. The
modified points and weights consist of:

• 1 point at the mean of Bel(xt):

X0 = µt with w0 = 1− 1

k
·

k∑
i=1

1

α2
i

• 2n × k points distributed uniformly on k distinct level
surfaces of Bel(xt):

X1,i = µt ± α1(
√
nΣt)i with w1,i =

1

k
· 1

2nα2
1...

Xk,i = µt ± αk(
√

nΣt)i with wk,i =
1

k
· 1

2nα2
k

The higher-order weight adjustment for the center point is also
similar to the conventional UKF:

w̃0 = w0 +
1

k
·

k∑
i=1

(1− α2) + β

After the sigma-points and weights are selected, the filtering
algorithm proceeds exactly as in the conventional UKF. We
refer to this modified filter algorithm as UKF2. With these
additional sigma-points, we are theoretically better able to
capture the higher-order behavior of the system. This is
demonstrated visually in 4.

We choose α = 0.2, 0.4, 0.8 in many of our experiments, but
in practice should be tuned to the system at hand. Generally
speaking, a value of k = 2 or k = 3 is the point of diminishing
return.

Fig. 3: Example of modified scaled sigma point selection in
2D (α1 = 0.4, α2 = 0.8)

B. System Models Framework

We define a family of Python classes for representing (very
generically) dynamic systems which may be candidates for
filtering. The base SystemModel class is a high-level class
representing a dynamic system, including a dynamics model,
measurement model, and corresponding noise models. The
constructor requires the dimensions of the following spaces:

• state_dim: dimension of the state space (x)
• control_dim: dimension of the control input space (u)
• measurement_dim: dimension of the measurement

space (z)
• dynamics_noise_dim: dimension of the dynamics

noise vector space (w)
• measurement_noise_dim: dimension of the mea-

surement noise vector space (v)
in addition to four callable functions:

• dynamics_func: (x, u, w)→ x
• measurement_func: (x, v)→ z
• dynamics_noise_func: ()→ w
• measurement_noise_func: ()→ v

which together define the system and its noises. In addition,
we define four subclasses

• GaussianSystemModel(SystemModel): both
process noise and observation noise are (potentially
non-additive) zero-mean gaussians

• DifferentiableSystemModel(SystemModel):
differentiable dynamics and measurement models
(requires explicit jacobians)

• AutoDiffSystemModel(GaussianSystemModel,
DifferentiableSystemModel): automatically
differentiable dynamics and measurement models
(amenable to EKF, no need to provide explicit jacobians)

(a) Linear Approximation (EKF) (b) Unscented Transform (UKF) (c) Modified Unscented Transform (UKF2)

Fig. 4: Visualization of different methods for approximating non-linear uncertainty propagation: linear approximation, unscented
transform, and modified unscented transform. The modified unscented transform produces a distribution which most closely
matches the optimal Gaussian.

• LinearSystemModel(GaussianSystemModel,
DifferentiableSystemModel): linear dynamics,
linear measurement model, and additive gaussian noises
(amenable to KF)

Automatic differentiation is accomplished by the JAX library.

C. Filter Implementations

We implement the Kalman Filter, Extended Kalman Filter,
and Unscented Kalman Filter as baselines for comparison.
These implementations are built to operate on the generic
system models defined above, and are effectively very mod-
ular. They each implement a predict_step(x, u) and
update_step(z) method for filtering control inputs and
measurements respectively. When instantiating a filter, the user
specifies the system model that will be operated on.

The ExtendedKalmanFilter implementation requires
a system which is both a GaussianSystemModel and a
DifferentiableSystemModel as its target system. This
allows it to call to the system’s jacobian getter methods, which
may be automatic.

The UnscentedKalmanFilter implementation is a bit
more general as it only requires a GaussianSystemModel.
The user has the opportunity to specify a custom
SigmaPointSelector, whose job it is to select sigma-
points given a prior mean and covariance. The pro-
posed UKF2 sigma-point selection is implemented as
MultiShellSigmaPointSelector, and supports both
cholesky- and eigen-decomposition based matrix-square-root
algorithms.

D. Evaluation Systems

To verify and evaluate our filter implementations, we define
some example systems with varying levels of complexity and
non-linearity.

• 1D Kinematic Car: a classic linear system (the double-
integrator) describing the motion of a car in one di-
mensional space under controlled acceleration. We also
implement a nonlinear variant that adds a drag term with
a quadratic dependence on velocity.

• 2D SLAM: a simultaneous localization and mapping
problem. This system estimates the position and orienta-
tion of a robot while simultaneously estimating a number
of landmark locations via (non-linear) bearing and range
measurements.

• Mackey-Glass Sequence: a sequence autoregression prob-
lem on the Mackey-Glass system, a set of differential
equations that exhibit chaotic behavior. This system is
known for being particularly challenging to filter [7].

• Double Inverted Pendulum: a double pendulum affixed to
a movable cart, mounted on a linear rail. A strict subset
of the joint positions are observed. This system is chaotic
and exhibits regime changes.

V. RESULTS

A. Kinematic Car
The 1D Kinematic car model is a classic linear system (the

double-integrator) describing the motion of a car in one di-
mensional space under controlled acceleration. The (idealized,
noiseless) system is defined:

state: x =
[
pos | vel

]
control: u =

[
acc

]
A =

[
1 ∆t
0 1

]
B =

[
(∆t)2/2

∆t

]
C =

[
1 0

]
f(x, u, w) = Ax+Bu+ w

h(x, v) = Cx+ v

We also define a non-linear system that adds a drag term with
a quadratic dependence on velocity.

f̃(x, u, w) = Ax+Bu+

[
0

−sgn(x2)(ν1|x2|+ ν2|x2|2)

]
+ w

Fig. 5: Filter results on a representative run of the 2D nonlinear SLAM system. The trajectory and map produced by UKF2
is visually better than the baselines. This is confirmed by the numerical errors. See Appendix VII-D for both raw L2 and
Mahalanobis errors.

These systems mainly verify that the filter implementations
are correct. The UKF and UKF2 both slightly out-perform
the EKF. Indeed, the (unmodified) UKF is optimal for this
quadratic system since it is able to capture all 2nd order
behavior. See the Appendix VII-C for figures.

B. 2D SLAM

The 2D non-linear SLAM system is significantly more
complex. This system estimates the position and orientation
of a robot while simultaneously estimating a number of
landmark locations. Inputs to the system include a sequence
of directional and rotational drive commands, and landmark
measurements consisting of bearing and range.

state: x =
[
pose | landmarks

]
control: u =

[
rot1 | drive | rot2

]
f(x, u, w) =

[
pose.rot(rot1).trans forward(drive).rot(rot2)

landmarks

]

h(x, v) =

atan2(landmark1, pose)− θ
∥landmark1 - pose∥2

...


A test environment was constructed involving ∼ 10 land-

marks and a control sequence approximating a pentagonal
drive around the landmarks. The presence of inverse-tangent
in this system makes it a good candidate for UKF2, since it
exhibits strong 3rd order behavior. As seen in Figure 10, the
UKF2 significantly outperforms the EKF and UKF baselines in
terms of both localization and mapping accuracy. The results
from 100 randomized trials are shown in Table I.

Filter Mean Pose Error Mean Landmark Error
EKF 1.687 1.202
UKF (α = 0.4) 0.420 0.448
UKF2 (α = 0.2, 0.4) 0.360 0.427
UKF2 (α = 0.2, 0.4, 0.8) 0.294 0.391

TABLE I: Average state estimation errors from 100 random-
ized trials of the synthetic 2D SLAM system (pentagonal
drive).

C. Double Inverted Pendulum

This system features a double pendulum affixed to a mov-
able cart, mounted on a linear rail. A full derivation of
the dynamics equations can be found in [2]. The system is
observed only at the cart position x and the angle of the
first joint θ1. The angle of the second join θ2 is completely
unobserved, forcing the filters to rely on the prediction step to
infer its value.

The pendulum is simulated at a timestep of ∆t = 0.001
using RK4 numerical integration. All the filters are run at a
slower rate of ∆t = 0.01 and use forward Euler integration
in their dynamics model. This discrepancy is representative of
real-world system/model mismatch.

A number of control sequences were tested. For the run
show in Figure 6, the cart was accelerated to the right for
2.0 seconds, and then accelerated to the left for 3.0 seconds,
leading to chaotic behavior. All filters eventually diverged
from the ground-truth due to overwhelming noise and low
sample rate, with UKF2 maintaining tracking the longest. See
https://youtu.be/tWpzPl-HMUw for an animation of
a similar test run.

D. Mackey-Glass Sequence

The Mackey-Glass Sequence is a set of differential equa-
tions that aim to imitate certain biological behaviors. Rate
of change of the state is highly chaotic and is dependent on
previous states tau number of time steps into the past.

https://youtu.be/tWpzPl-HMUw

Fig. 6: Filter results on a run of the double pendulum system.
The unmeasured second-joint angle θ2 is shown. All filters
diverge from the ground-truth due to overwhelming noise and
low sample rate, with UKF2 maintaining tracking the longest.
EKF diverges at t ≈ 12.0, UKF at t ≈ 12.8, and UKF2 at
t ≈ 21.1.

dP/dt =
β0 ∗ θn ∗ P (t− τ)

θn + P (t− τ)

The system shows decent state estimation and tracking
against the ground truth results. As shown in Figure 11 the
tracking is fairly accurate. The large majority of error in this
case can be attributed to a sub sampling rate of 5.

The results from 100 randomized trials are shown below
in Table II. We were unable to replicate the dramatic results
from [11], in particular our EKF implementation did not
experience a noticable phase lag (despite efforts to match
experimental design), so there is not much appreciable variety
in performance between filters.

Filter Mean Error
EKF 2.9200
UKF 2.8713
UKF2 (α = 0.4) 2.8537
UKF2 (α = 0.2, 0.4) 2.8542
UKF2 (α = 0.2, 0.4, 0.8) 2.8152

TABLE II: Average state estimation errors in the form of
Mahalanobis Distance error from 100 randomized trials of the
Mackey-Glass System for tau = 30.

E. Computational Performance

In each evaluation system, the average performance of each
filter implementation was measured in iterations per second.
The observed rates scaled as expected. The UKF2 runs at
roughly half the rate of the UKF. In the pendulum system, for
example, the UKF achieved 97Hz while the UKF2 achieved
46Hz, which corresponds to their computing 2n + 1 = 13
and 4n + 1 = 25 sigma-points respectively each iteration. It
is worth noting that there is significant room for optimization
to our current Python implementations (in particular, batch
processing of sigma-points via vector operations). Table III
shows the full results.

Filter Car SLAM Pendulum Mackey-Glass
EKF 850 423 488 769
UKF 388 97 409 210
UKF2 (k = 2) 178 46 229 113

TABLE III: Observed runtime performance of the (unopti-
mized) EKF, UKF, and UKF2, measured in iterations per
second (Hz).

VI. CONCLUSION

In this work we investigate a novel modification to the
conventional Unscented Kalman Filter, dubbed the UKF2. By
sampling the domain at a larger (but still constant with respect
to dimension) number of sigma-points, the UKF2 is better able
to capture 3rd and higher order behavior of the system that
would otherwise have gone ignored, leading to a more accurate
propagation of uncertainty. Additionally, the wider spread of
samples makes the filter less sensitive to regime changes
in the dynamics. We test the UKF2 on various dynamic
systems of varying levels of complexity. In all systems tested,
the UKF2 achieves better state-estimation performance on
average than the EKF and UKF, especially in those systems
exhibiting strong 3rd order behavior (SLAM and Double-
Pendulum). However, without further optimization, the UKF2
incurs a factor of k = 2 or k = 3 increase in computation
cost over the UKF, which may limit its potential usage in
embedded settings. Avenues for future work mainly relate to
optimization. These include implementing batch sigma-point
processing, as well as perhaps an adaptive scheme that selects
a value for k based on knowledge of the current dynamics
regime.

Our Python 3 codebase, including KF, EKF, UKF, and
UKF2 implementations, is available at https://github.
com/rschwa6308/UKF-Variants.

REFERENCES

[1] Vishal Awasthi and Krishna Raj. A Survey of Kalman Filter Algorithms
and Variants in State Estimation, pages 1–14. 08 2021.

[2] Ian Crowe-Wright. Control theory: The double pendulum inverted on a
cart. PhD thesis, 2018.

[3] A. Germani, C. Manes, and P. Palumbo. Polynomial extended kalman
filter. IEEE Transactions on Automatic Control, 50(12):2059–2064,
2005.

[4] Ramakrishna Gurajala, Praveen B. Choppala, James Stephen Meka, and
Paul D. Teal. Derivation of the kalman filter in a bayesian filtering
perspective. In 2021 2nd International Conference on Range Technology
(ICORT), pages 1–5, 2021.

[5] S.J. Julier and J.K. Uhlmann. Unscented filtering and nonlinear estima-
tion. Proceedings of the IEEE, 92(3):401–422, 2004.

[6] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engineering,
82(Series D):35–45, 1960.

[7] Michael C. Mackey and Leon Glass. Oscillation and chaos in physio-
logical control systems. Science, 197(4300):287–289, 1977.

[8] Leonard A. McGee and Stanley F. Schmidt. Discovery of the Kalman
filter as a practical tool for aerospace and industry. 11 1985.

[9] Jung Min Pak and Choon Ki Ahn. State estimation algorithms for
localization: A survey. International Journal of Control, Automation
and Systems, 21(9):2771–2781, Sep 2023.

[10] Michael Roth and Fredrik Gustafsson. An efficient implementation
of the second order extended kalman filter. In 14th International
Conference on Information Fusion, pages 1–6, 2011.

https://github.com/rschwa6308/UKF-Variants
https://github.com/rschwa6308/UKF-Variants

[11] E.A. Wan and R. Van Der Merwe. The unscented kalman filter for
nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems
for Signal Processing, Communications, and Control Symposium (Cat.
No.00EX373), pages 153–158, 2000.

VII. APPENDIX

A. Bayes Filter Derivation

We write y1:t to represent sequence of all actions and measurements up to time t.

Predict Step:

Bel(xt) = p(xt | y1:t−1, ut)

=

∫
p(xt | y1:t−1, ut, xt−1)p(xt−1 | y1:t−1, ut)dxt−1

=

∫
p(xt | ut, xt−1)p(xt−1 | y1:t−1, ut)dxt−1

=

∫
p(xt | ut, xt−1)p(xt−1 | y1:t−1)dxt−1

=

∫
p(xt | ut, xt−1)Bel(xt−1)dxt−1

Total probability

Markov property

Temporal order
(ut cannot affect xt−1)

Update Step:

Bel(xt) = p(xt | y1:t−1, zt)

= η p(zt | xt, y1:t−1)p(xt | y1:t−1)

= η p(zt | xt)p(xt | y1:t−1)

= η p(zt | xt)Bel(xt)

Bayes’ Rule

Markov property

where η is a normalization constant that ensures the PDF sums to 1. The terms p(xt | ut, xt−1) and p(zt | xt) are called the
Action Model and Measurement Model respectively. It is possible to define the system by explicitly specifying these conditional
distributions for all possible values of x, u, and z.

B. Uncertainty Propagation

Fig. 7: Uncertainty propagation of a gaussian prior through a linear function (left) and a nonlinear function (right). Select
segments of the input distribution and their images in the output distribution are highlighted to show examples of mass transport
explicitly. The image under the linear function is an easily-parametrized gaussian, while the image under the nonlinear function
is not. However, a gaussian can be fit to the true distribution.

Fig. 8: Kalman Filtering on the 1D Linear Kinematic Car example system

Fig. 9: Extended and Unscented Kalman Filtering on the 1D Nonlinear Kinematic Car example system. The UKF is optimal
for this (quadratic) system since it is able to capture all 2nd order behavior. Indeed, UKF2 performed identically.

C. Kinematic Car Results

Filter results for both the linear and non-linear kinematic car system:

D. SLAM Additional Results

Filter results for the 2D non-linear SLAM system:

Fig. 10: Filter results on a representative run of the 2D nonlinear SLAM system. Both raw L2 and Mahalanobis errors are
shown here.

E. Mackey-Glass Additional Results

Filter results for the Mackey-Glass system:

Fig. 11: Filter results on a representative run of the Mackey-Glass system. Raw system values are shown here.

	Introduction
	Related Work
	Background
	Bayes Filter
	Kalman Filter
	Extended Kalman Filter
	Unscented Kalman Filter

	Methodology
	Modified Unscented Kalman Filter
	System Models Framework
	Filter Implementations
	Evaluation Systems

	Results
	Kinematic Car
	2D SLAM
	Double Inverted Pendulum
	Mackey-Glass Sequence
	Computational Performance

	Conclusion
	References
	Appendix
	Bayes Filter Derivation
	Uncertainty Propagation
	Kinematic Car Results
	SLAM Additional Results
	Mackey-Glass Additional Results

